If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60-4.9t^2=0
a = -4.9; b = 0; c = +60;
Δ = b2-4ac
Δ = 02-4·(-4.9)·60
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{6}}{2*-4.9}=\frac{0-14\sqrt{6}}{-9.8} =-\frac{14\sqrt{6}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{6}}{2*-4.9}=\frac{0+14\sqrt{6}}{-9.8} =\frac{14\sqrt{6}}{-9.8} $
| -11a-(-4a)-(-13a)+(-10a)=12 | | 3p-2p=9 | | 100-20x=8 | | 3d-(-19d)+(-5d)=-17 | | 5x+157=-7x-11 | | 0.04x=16 | | 4a3-32a2-a+8=0 | | 8=100-20x | | 2f/8=24/8 | | 14n+4n+(-4n)-15n-3n=-16 | | f+–15=–1 | | 3+2x=-15-3x | | -z-9z=20 | | -2x-4=1x+1 | | 2(x–5)+6=28 | | 36=7u+3(u+2) | | 9j+3j-2j=10 | | 3^(x+2)*4^(2x-1)=1/2^(4-3x) | | -18v+2v+6v-(-7v)=-6 | | 7÷2(m+12)=5÷2(20+m) | | u+4u-4u-u+3u=15 | | 5x+5=-4x-55x+5=−4x−5 | | x×6=54 | | 17v-14v+v-2v=18 | | 55+2x+5=180 | | 11x-4x-2x=20 | | 17+3f=47 | | 2/5z=8/12 | | 8(b-84)=80 | | 9p^2+6=474 | | 3g-3g+5g+g=6 | | 2/5=4/5c |